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We theoretically investigate the time-dependent ballistic transport in metallic graphene nanoribbons of width
W after the sudden switching of a bias voltage. The potential drop is linear across a central part of length L
where the current is calculated. During the early transient time the current does not grow linearly in time but
remarkably reaches a temporary plateau. Such behavior allows us to define a transient conductivity, the value
of which coincides with the minimal conductivity of two-dimensional graphene. At time L /vF �vF being the
Fermi velocity� a crossover takes place: the current changes abruptly and saturates at its final steady-state value
�second plateau�. We show that the two plateaus develop with damped oscillations of totally different nature
and demonstrate that the occurrence of the first plateau is independent of the boundary conditions. The
transition from quasi-one-dimensional to bulk behavior �W→�� is also analyzed.
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I. INTRODUCTION

The recent isolation of single layers of carbon atoms1 has
attracted growing attention in the transport properties of
graphene-based devices. In these systems unconventional
phenomena like the half-integer quantum Hall effect2 and the
Klein tunneling3 have been observed. Such peculiar behavior
stems from the relativistic character of the electrons in the
carbon honeycomb lattice; closed to the Dirac point the
charge carriers behave as two-dimensional �2D� massless
Dirac fermions4 and have very high mobility.5 This fact has
stimulated intense theoretical and experimental investiga-
tions into graphenic ultrafast devices like field effect
transistors,6 p-n junction diodes and terahertz detectors.7 The
full control of their electronic response is crucial for optimiz-
ing the performance and the study of the real-time dynamics
is becoming increasingly important as demonstrated by the
recent time-domain measurements of the electron motion in a
carbon nanotube.8

One of the most debated aspects of the transport proper-
ties of graphene is the minimum conductivity �min at the
Dirac point. From the theoretical point of view the problem
arises from the sensitivity of �min to the order in which cer-
tain limits �zero disorder and zero frequency� are taken,9 thus
producing different values around the quantum e2 /h.9–12

Very recently Lewkowicz and Rosenstein13 overcame this
ambiguity employing a time-dependent approach and calcu-
lated �min by solving the quench dynamics of 2D Dirac ex-
citations after the sudden switching of a constant electric
field.13,14 Interestingly their approach does not suffer from
the use of any regularization related to the Kubo or Landauer
formalism and yields �min=�e2 /2h.

Time-dependent approaches give access to quantities oth-
erwise difficult to estimate and have the merit to provide a
real-time picture of the microscopic dynamics. Despite the
large effort in the study of graphenic systems, a genuine
real-time analysis of graphene nanoribbons is still missing.

In this paper we calculate the electron dynamics in un-
doped graphene nanoribbons with finite width after the sud-
den switch-on of an external bias voltage. We study the tran-

sition from quasi-one-dimensional �quasi-1D� to bulk and
extract �min as well as the dc conductivity �dc from a one-
shot calculation: the time-dependent current does indeed ex-
hibit two plateaus. The development of these plateaus occurs
with damped oscillations of different nature �frequency and
harmonics�. Remarkably, this is a universal behavior and is
independent of the boundary conditions.

The plan of the paper is the following. In the next section
we briefly introduce the tight-binding Hamiltonian describ-
ing the nanoribbons and the voltage profile. In the special
case of nanoribbons with periodic boundary conditions, we
present an equivalent ladder model which is numerically less
demanding to treat. Next we focus on the calculation of the
time-dependent current flowing across the system after the
sudden switching of the bias voltage. The practical imple-
mentation method is described in detail. In Sec. III we report
the numerical results for nanoribbons of different boundaries
�periodic and open� and different chiralites �zigzag and arm-
chair�. The summary and main conclusions are drawn in Sec.
IV.

II. MODEL AND NUMERICAL METHOD

We consider the system illustrated in Fig. 1. The nanorib-
bon is divided in three regions: a left �L� and a right �R�
semi-infinite graphenic reservoirs and a central �C� region of
length L=aNc, with Nc the number of cells along the longi-
tudinal x direction and a=2.46 Å, the graphene lattice con-
stant. The width of the ribbon is W=a�3Ny, with Ny the
number of cells along the transverse y direction. The three
regions are linked via transparent interfaces, i.e., the equilib-
rium system is translationally invariant along x, see Fig. 1.

The system is driven out of equilibrium by the sudden
switching of the bias voltage. This is an ultrafast process and
excites high energy electrons since the perturbation �steplike
in time� contains Fourier components with very large fre-
quencies. It is well known from the Landauer formula that
the steady-state current is solely due to the scattering modes
lying within the bias window. On the contrary, the short-time
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transient dynamics involves all the electrons within the band-
width and the frequently used Dirac cone approximation
�valid at energies below 1 eV� is not accurate. We therefore
use the full tight-binding Hamiltonian

H = H0 + U�t� = v�
�i,j�

ci
†cj + ��t��

i

Vici
†ci, �1�

where the spin index has been omitted and v=2.7 eV is the
hopping integral of graphene. The first sum runs over all
pairs of nearest neighbor carbon sites and ci

�†� is the annihi-
lation �creation� operator of a � electron on site i. Here we
use the collective index i= �p , iy , ix� to identify a site in the
nanoribbon, such that p=� ,� indicates the two longitudinal
zigzag chains, iy denotes the cell in the y direction, and ix is
the position in the x direction, see Fig. 1. In Eq. �1� H0 is the
translationally invariant equilibrium Hamiltonian, while U�t�
is the bias perturbation with �non-self-consistent� voltage
profile15–17 given by the function Vi

Vi = 	V/2 i � L

V/2 − Eix i � C

− V/2 i � R,

 �2�

with V the applied voltage and ix� �0,L�. The electric field
E=V /L is uniform and confined in region C. The above
modeling of Vi could find a realization in, e.g., a planar junc-
tion with the L and R regions on top of metallic electrodes.
The time-dependent total current I�t� flowing across the in-
terface in the middle of region C is

I�t� = 2�
iy=1

Ny

�
p=�,�

Iiy
�p��t� , �3�

where the factor 2 accounts for spin degeneracy and Iiy
�p� is

the contribution from the p chain of the iy-th cell. Our inten-
tion is to calculate I�t� at positive times and explore the
possibility of defining a meaningful transient conductivity
before the crossover into the steady-state regime takes place.

We start our analysis by considering the zigzag nanorib-
bon with periodic boundary conditions �pbc� along y �arm-

chair nanotube�.18–20 Then, the current Iiy
�p� is independent of

iy and p, and hence

I�t� = 4NyĪ�t� , �4�

with Ī the current through a single zigzag chain. Since the
transverse momentum ky =2�n /�3aNy �with n=0, . . .Ny −1�
is conserved the current Ī can be written as

Ī�t� =
1

Ny
�
ky

Īky
�t� , �5�

with Īky
the current flowing through the ladder of Fig. 2 with

staggered and ky-dependent transverse hopping. Equation �5�
establishes that the total current I�t� can be evaluated by
solving Ny independent problems whose dimension is 1 /Ny
times the dimension of the original problem. This provides a

huge numerical simplification and how to calculate Īky
�t� at

fixed ky is the subject of the rest of this section. We introduce
the mixed position-momentum operators

c�p,ky,ix� = Ny
−1/2�

iy

eikyiy�3ac�p,iy,ix� �6�

in terms of which the current Īky
�t� can be expressed as

Īky
�t� =

2ev
�

Re�G�p,ky,L/2�;�p,ky,L/2+a/2�
	 �t,t�� , �7�

where G	 is the lesser Green’s function,

G�p,ky,ix�;�r,qy,jx�
	 �t1,t2� 
 i�c�p,ky,ix�

† �t1�c�r,qy,jx��t2�� , �8�

that for p=r is independent of the chain index p=� ,�. The
time evolution of G	 is governed by the equation

G	�t1,t2�i�eiHt1f�H0�e−iHt2� , �9�

with f the Fermi distribution function. For each transverse

momentum ky we evaluate Īky
by computing the exact time

evolution of the ladder in Fig. 2 with reservoirs of finite
length Lr=aNr. This approach allows us to reproduce the
time evolution of the infinite-leads system up to a time
Tmax�2Lr /vF, where vF is the Fermi velocity.21–24 For
t
Tmax electrons have time to propagate till the far boundary
of the leads and back, yielding undesired finite size effects in
the calculated current. In all numerical simulations we set
Tmax much larger than the time to reach the steady-state.

FIG. 1. �Color online� Schematic representation of the system.
The nanoribbon has semi-infinite L and R graphenic reservoirs. The
linear drop of the bias voltage in region C is also shown.

FIG. 2. �Color online� Ladder model for fixed transverse mo-
mentum ky. The bias profile is the same as in Fig. 1.
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Since the finite-size leads are explicitly included, the ap-
proach is alternative to the embedding approach25–28 �in
which the leads are accounted for by an embedding self-
energy� and is closer to wave-function based schemes.29,30

For observable quantities in the central region �like the cur-
rent that we calculate� there are no corrections up to a time
Tmax and the results obtained within the present approach and
the embedding approach coincide.23 In the following we will
focus on small values of V since we are here interested in
linear response properties, although the above propagation
scheme can be applied beyond the linear regime.

According to Refs. 23 and 24, the practical calculation of
the lesser Green’s function G	�t , t� consists in evaluating the
matrix product in Eq. �9� at each time, and this requires the
exact numerical diagonalization of the effective ladder
Hamiltonian. In the case under consideration this procedure
is highly nontrivial due to the peculiar behavior of the elec-
tron modes with small ky �closed to the Dirac point�. As we
shall see, these are “slow” electrons and the development of

Īky
to a steady state is numerically very hard to obtain. To

overcome such difficulty we use a hybrid basis in which the
Hamiltonians of the isolated L and R reservoirs are diagonal
while the Hamiltonian of region C remains expressed in the
original basis �p ,ky , ix�. The diagonal representation of the
leads is achieved following the procedure developed by
Malysheva and Onipko.31,32 The enormous advantage of our
basis set is clarified below.

For small biases V��vF /eW the long-time limit of Ī�t� is
solely determined by the electrons right at the Dirac point
�with ky =0�, in agreement with the Landauer formula. How-
ever, during the transient all transverse modes are excited
and contribute to the sum in Eq. �5�.34 The damping time of

Īky
0�t� goes like ky
−1 and hence the smaller is ky the longer is

the time we need to propagate before the zero-current steady
state is approached. To reproduce this feature large values of
Nr are needed, thus making the computation in principle too
demanding. We, however, observed that after a time of order

�c=L /vF only few low-energy states contribute to Īky
�t� for

ky close to the Dirac point. Therefore, for any given ky 
0
we introduce an energy cutoff 
ky

�10�vFky and retain only
the lead eigenstates of the system in Fig. 2 in the energy
window �−
ky

,
ky
�. This is possible thanks to the knowl-

edge of the analytic eigenstates of a rectangular graphenic
macromolecule.31,32 Such truncation of the Hilbert space al-
lows us to consider very long leads while treating region C
exactly. The time evolution become then feasible and con-
verges with very high accuracy. We would like to recall that
the above scheme cannot be applied to nanoribbons with
open boundaries. In that case it is not possible to adopt an
effective ladder model like the one in Fig. 2 due to the lack
of translational invariance along the transverse direction.
Thus the computation of the current is much more demand-
ing and only systems with small L and W can be studied, see
next the section.

III. RESULTS AND DISCUSSION

In this section we present explicit numerical results ob-
tained for nanoribbons with reservoirs of length Nr=2000. In

Fig. 3 we show the time-dependent current I�t� calculated for
L�25 nm �Nc=100� and width W�106 nm �Ny =250� with
an applied voltage V=8�10−4 Volt and zero temperature.
The ballistic current increases abruptly during the early tran-
sient regime, t�� /v
�v. Remarkably, however, for t
�v
the current develops a first plateau with average current Imin
and duration �c=L /vF. Such scenario differs from that in
ordinary metals where electrons are uniformly accelerated by
the electric field E. Replacing region C with, e.g., a two-
dimensional �2D� square lattice model the current would be
linear in time up to �c, thus producing the well known Drude
peak in the current density j= I /W in the bulk limit L ,W
→�. The constant slope � of the linear behavior j=�t is
proportional to the density of states; the latter vanishes in
bulk graphene where j does indeed approach a finite value
when t→�. This subtle compensation is at the origin of the
finite minimal dc conductivity �min.

13 In our case electrons
initially in the middle of C behave like electrons in a bulk
graphene. From Fig. 3 we see that a finite width W
�100 nm is already enough for such compensation to occur.
We can, therefore, provide an independent evaluation of
�min= j /E: we identify j with Imin /W, express E as V /L and
obtain

�min =
Imin

V

L

W
. �10�

Figure 3 shows that our data are consistent with the value
�min=�e2 /2h with excellent precision.

The first plateau lasts up to �c=L /vF�60tv. At times
larger than �c the electrons start exploring the reservoirs
where the electric field is zero. At this point a clear-cut cross-
over takes place: the current suddenly drops and a standard
electron-hole dephasing mechanism sets in. We notice the
formation of a second plateau whose height corresponds to
the value of the final steady-state current Idc. As discussed
above, however, such value is reached after a very slow
damping process during which the current displays decaying
oscillations with dominant frequency �̄=2�vF /W, ��̄ being
the energy spacing between the transverse energy subbands,

0.01 0.1 1 10 100 1000 10000
t�tv

0

2

4

6

8

10

I �t�
�������������
VΣ0

�Σmin �W�L��Σ0

FIG. 3. �Color online� Total current I�t� with geometric param-
eters L�25 nm, W�106 nm, Nr=2000, and applied voltage V
=8�10−4 Volt. Current is in units of V�0, where �0=e2 /h is the
quantum of conductivity and time in units of tv=2.5�10−16 s. The
values of the dc conductivity �dashed line� �dc /�0=4 �Ref. 32� and
of the minimal conductivity �dotted line� ��min�W /L� /�0=� /2
�W /L are also shown.
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see also Fig. 4. We checked numerically that Idc agrees with
the Landauer formula and does not depend on L and W pro-
vided that V��vF /eW. Thus, the dc conductivity �dc of the
device can simply be extracted from �dc= Idc /V. Our data
yield �dc=4e2 /h with high numerical accuracy. This value is
indeed twice the conductivity of a metallic nanoribbon, as it
should when pbc are employed.32

Further we investigated the transition from quasi-1D to
bulk behavior by varying the width W. In Fig. 4 we see that
for narrow ribbons with W�10 nm finite-size effects pro-
duce a drastic deviation from the ideal graphene bulk. The
transient current does not exhibit any plateau but grows with
an approximate linear envelope �up to �c�, in qualitative
agreement with the Drude behavior.

We also observe that the plateau at Imin develops with
damped oscillations of frequency �0=2v /�.13 Interestingly

�0 is not displayed by any of the individual currents Īky
�t�,

but appears only as a cumulative effect of the sum in Eq. �5�.
Such frequency is therefore a genuine bulk property and may
be related to the resonant effect predicted to occur in optical
response of graphene right at �=2v /�.33 While the oscilla-
tory behavior during the first plateau is fairly monochromatic
and independent of W during the second plateau this is not
so. The Fourier decomposition of I�t� reveals a dominant
peak at frequency �̄=2�vF /W as well as peaks at �n=n�̄
whose height slowly decreases when n→�.

Finally we calculated I�t� also for nanoribbons with open
boundaries. As anticipated above, the lack of translational
invariance along the transverse direction makes the practical
computation of Eq. �9� much more demanding, and only sys-
tems with small L and W can be studied within the present
approach. In Fig. 5 we show I�t� for three different metallic
armchair nanoribbons �the honeycomb lattice is rotated of
90 degrees with respect to that of Fig. 1�. It can be seen that
already for W�2–4 nm there is a tendency to form the
universal first plateau leading to �min, while for W�1 nm
the current I�t� grows linearly in time until t��c. On the
other hand at long times the current tends clearly to the Lan-
dauer value, consistent with �dc=2e2 /h, independently of the
aspect ratio L /W.10,31 The behavior of I�t� in zigzag open-
boundaries nanoribbons also displays a first plateau consis-
tent with �min. However, we observed that the development
of the final steady state is substantially longer. Our results

demonstrate that boundary effects have no impact on the first
universal plateau but only affect the value of the steady-state
current.

IV. CONCLUSIONS

In summary we pointed out the subtle difficulties in con-
structing a reliable method to perform time evolutions of
finite width graphene nanoribbons and proposed an efficient
numerical scheme to overcome them. We presented a real-
time study of the transport properties of these systems in
contact with graphenic reservoirs. Since we are mostly inter-
ested to the conductance, explicit calculations have been per-
formed within the linear regime, although the approach is not
limited to small biases. We showed that for large enough
width W�L�20 nm the time-dependent current displays
two plateaus. The existence of the first plateau is intimately
related to the relativistic spectrum of graphene, and arises
from a subtle compensation between vanishing density of
states at the Fermi point and diverging current density at long
times. From the first plateau we can define a meaningful
minimal conductivity and provide an independent evaluation
of �min in bulk graphene. The second plateau is instead re-
lated to the dc conductivity �dc. The formation of the pla-
teaus occurs with damped oscillations of different nature:
monochromatic and size independent the first while poly-
chromatic and width dependent the second. We also provide
evidence that the two-plateaus behavior is robust against dif-
ferent boundary conditions. To conclude we wish to point out
that under ac biases the time-dependent conductivity can be
used to extract the optical conductivity �ac of graphene. It
was shown experimentally35 and explained theoretically36

that �ac is almost � independent and equals �min with high
accuracy over a wide range of frequencies. Remarkably to
extract the universal value of �ac high frequency signals with
��1 / tv have been employed.35 Therefore we believe that a
real-time approach like to one presented here is needed to
enlighten the crossover from the dc case to ultrafast sce-
narios in which the period of the ac signal is comparable
with the intrinsic hopping time of the bulk system.

0 50 100 150 200
t�tv

0
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10

I �t�
�������������
VΣ0

�Σmin �W1�L��Σ0

�Σmin �W2�L��Σ0

� W1 � 106 nm� W2 � 27 nm� W3 � 13 nm

FIG. 4. �Color online� Current I�t� for different widths W1

=106 nm, W2=27 nm, W3=13 nm. The rest of parameters are as
in Fig. 3.

0 10 20 30 40
t�tv

0

1
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I �t�
�������������
VΣ0

� W1 � 3.6 nm� W2 � 2.1 nm� W3 � 0.6 nm

�Σmin �W1�L��Σ0

�Σmin �W2�L��Σ0

FIG. 5. �Color online� Current I�t� for three different armchair
open boundary nanoribbons. The parameters are L=5.5 nm, W1

=3.6 nm, W2=2.1 nm, W3=0.6 nm and the applied bias is V
=0.03 Volt. The leads have Nr=9 cells. The values of the dc con-
ductivity �dashed line� �dc /�0=2 �Refs. 10 and 32� and of the mini-
mal conductivity �dotted line� ��min�W /L� /�0=� /2�W /L are
also shown.
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